Difference between revisions of "The Determination of the Location of Contact Electrification-Induced Discharge Events"

From Soft-Matter
Jump to: navigation, search
(Results)
Line 7: Line 7:
 
==Results==
 
==Results==
  
The electrodes are able to measure the amount of charge on the steel ball by measuring the amount of charge induced on the electrode which can then be measured using an electrometer. To be more accurate, the amount of charge measured by the electrode, Q, is a sum of the amount of charges on the sphere, Q<sub>s</sub>, and the amount of charges on the insulator near the electrode, Q<sub>dne</sub>, i.e. Q = Q<sub>s</sub> + Q<sub>dne</sub>. The signal measured each time the steel passes through the electrode is a sharp peak, similar to figure 2(c). The peak corresponds to Q<sub>s</sub> + Q<sub>dne</sub>, while the base correspond to Q<sub>dne</sub>. When the steel ball is sufficiently far away, the induced charge due to the ball is insignificant. Figure 2(a) tracks the position of peak (grey line) and base (purple line) as the steel ball passed through electrode. When the steel ball accumulates charges, the peaks and baseline will increase and decrease monotically with time respectively. Discontinuities in either the peak or the baseline correspond to discharge events, marked with coloured arrows on figure 2(a).  
+
The electrodes are able to measure the amount of charge on the steel ball by measuring the amount of charge induced on the electrode which can then be measured using an electrometer. To be more accurate, the amount of charge measured by the electrode, Q, is a sum of the amount of charges on the sphere, Q<sub>s</sub>, and the amount of charges on the insulator near the electrode, Q<sub>dne</sub>, i.e. Q = Q<sub>s</sub> + Q<sub>dne</sub>. The signal measured each time the steel passes through the electrode is a sharp peak, similar to figure 2(c). The peak corresponds to Q<sub>s</sub> + Q<sub>dne</sub>, while the base correspond to Q<sub>dne</sub>. When the steel ball is sufficiently far away, the induced charge due to the ball is insignificant. Figure 2(a) tracks the position of peak (grey line) and base (purple line) as the steel ball passed through electrode. When the steel ball accumulates charges, the peaks and baseline will increase and decrease monotically with time respectively. Discontinuities in either the peak or the baseline correspond to discharge events, marked with coloured arrows on figure 2(a). In this set-up, the disc has been divided into four parts: A, O, B and F (Figure 2 d). Interestingly, we can attribute in which part (A, O, B or F) the discharge occurred just by looking at the general shape of the discontinuity. For example, if
  
 
[[Image:Whitesides2.png]]
 
[[Image:Whitesides2.png]]

Revision as of 03:00, 17 November 2011

Introduction

Contact electrification - the transfer of charges from one object to another when brought into contact and separated - is ubiquitous and has been known for a very long time. Yet, there are still fundamental questions that are not fully understood, such as the role of friction in the transfer of charges. Contact electrification is associated with friction, and yet it is not known if friction is the mechanism for contact electrification or merely incidental to the pressures required to bring the two surfaces together. The authors reported a system of a steel sphere rolling in a circular path on a disc made of organic insulator. A rotating bar magnet drives the rolling of the steel sphere. As the steel sphere rolls around the organic insulator, it will pick up positive charges (ions) from the organic insulator and when the electric field due to the excess charges exceed the dielectric field breakdown, there will be a discharge of positive ions back to the insulator. By placing electrodes beneath the organic insulator, the authors were able to track and pinpoint the location of these discharge events. The authors were then able to study more closely the conditions for discharge events. The schematics of the set-up in shown below.

Whitesides1.png

Results

The electrodes are able to measure the amount of charge on the steel ball by measuring the amount of charge induced on the electrode which can then be measured using an electrometer. To be more accurate, the amount of charge measured by the electrode, Q, is a sum of the amount of charges on the sphere, Qs, and the amount of charges on the insulator near the electrode, Qdne, i.e. Q = Qs + Qdne. The signal measured each time the steel passes through the electrode is a sharp peak, similar to figure 2(c). The peak corresponds to Qs + Qdne, while the base correspond to Qdne. When the steel ball is sufficiently far away, the induced charge due to the ball is insignificant. Figure 2(a) tracks the position of peak (grey line) and base (purple line) as the steel ball passed through electrode. When the steel ball accumulates charges, the peaks and baseline will increase and decrease monotically with time respectively. Discontinuities in either the peak or the baseline correspond to discharge events, marked with coloured arrows on figure 2(a). In this set-up, the disc has been divided into four parts: A, O, B and F (Figure 2 d). Interestingly, we can attribute in which part (A, O, B or F) the discharge occurred just by looking at the general shape of the discontinuity. For example, if

Whitesides2.png

Whitesides3.png

Figure 2

Whitesides4.png

Whitesides5.png

Whitesides6.png

Personal Thoughts

References