Difference between revisions of "The Determination of the Location of Contact Electrification-Induced Discharge Events"

From Soft-Matter
Jump to: navigation, search
(Introduction)
Line 1: Line 1:
 
==Introduction==
 
==Introduction==
  
Contact electrification - the transfer of charges from one object to another when brought into contact and separated - is ubiquitous and has been known for a very long time. Yet, there are still fundamental questions that are not fully understood, such as the role of friction in the transfer of charges. Contact electrification is associated with friction, and yet it is not known if friction is the mechanism for contact electrification or merely incidental to the pressures required to bring the two surfaces together. The authors reported a system of a steel sphere rolling in a circular path on an organic insulator. As the steel sphere  
+
Contact electrification - the transfer of charges from one object to another when brought into contact and separated - is ubiquitous and has been known for a very long time. Yet, there are still fundamental questions that are not fully understood, such as the role of friction in the transfer of charges. Contact electrification is associated with friction, and yet it is not known if friction is the mechanism for contact electrification or merely incidental to the pressures required to bring the two surfaces together. The authors reported a system of a steel sphere rolling in a circular path on a disc made of  organic insulator. A rotating bar magnet drives the rolling of the steel sphere. As the steel sphere rolls around the organic insulator, it will pick up positive charges (ions) from the organic insulator and when the electric field due to the excess charges exceed the dielectric field breakdown, there will be a discharge of positive ions back to the insulator. By placing electrodes beneath the organic insulator, the authors were able to track and pinpoint the location of these discharge events. The authors were then able to study more closely the conditions for discharge events. The schematics of the set-up in shown below.
  
 
[[image:Whitesides1.png]]
 
[[image:Whitesides1.png]]
Line 7: Line 7:
 
==Results==
 
==Results==
  
[[Image:Whitesides1.png]]
 
  
 
[[Image:Whitesides2.png]]
 
[[Image:Whitesides2.png]]

Revision as of 02:42, 17 November 2011

Introduction

Contact electrification - the transfer of charges from one object to another when brought into contact and separated - is ubiquitous and has been known for a very long time. Yet, there are still fundamental questions that are not fully understood, such as the role of friction in the transfer of charges. Contact electrification is associated with friction, and yet it is not known if friction is the mechanism for contact electrification or merely incidental to the pressures required to bring the two surfaces together. The authors reported a system of a steel sphere rolling in a circular path on a disc made of organic insulator. A rotating bar magnet drives the rolling of the steel sphere. As the steel sphere rolls around the organic insulator, it will pick up positive charges (ions) from the organic insulator and when the electric field due to the excess charges exceed the dielectric field breakdown, there will be a discharge of positive ions back to the insulator. By placing electrodes beneath the organic insulator, the authors were able to track and pinpoint the location of these discharge events. The authors were then able to study more closely the conditions for discharge events. The schematics of the set-up in shown below.

Whitesides1.png

Results

Whitesides2.png

Whitesides3.png

Whitesides4.png

Whitesides5.png

Whitesides6.png

Personal Thoughts

References