Difference between revisions of "Surfactants: Colloid Surfactants for Emulsion Stabilization"

From Soft-Matter
Jump to: navigation, search
(New page: Entry by Grant Gonzalez, 9 Nov 2012 = Foams = '''Keywords''': Thin Films, Disjoining Forces, Foams, Surfactants '''Authors''': Arnaud Saint-James, Douglas J. Durian, David A. Weitz == ...)
 
(Reference)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
Entry by Grant Gonzalez, 9 Nov 2012
+
Entry by Grant Gonzalez, 25 Nov 2012
  
= Foams =
+
= Colloid Surfactants for Emulsion Stabilization =
  
'''Keywords''': Thin Films, Disjoining Forces, Foams, Surfactants
+
'''Keywords''': Adsorption, Foams, Surfactants
  
'''Authors''': Arnaud Saint-James, Douglas J. Durian, David A. Weitz
+
'''Authors''': Jin-Woong Kim, Daeyeon Lee, Ho Cheung Shum, and David A. Weitz
  
 
== Summary ==
 
== Summary ==
  
This paper examines the structures of foams, a dispersion of gas within a smaller volume of liquid. Thin films form the interfaces between the gas and liquid faces and are stabilized by surfactants.  
+
This paper examines the use of classic solid particles to stabilize emulsions absorbed by wetting as well as the use of Janus particles to drive the adsorption of particles at the monolayer.  
  
[[Image:Foams.jpg|thumb|Photograph illustrating the microstructure of the foam that still persists 2 h after
+
Surfactants that accumulate between two immisicible liquids stabilize the separation of the liquid interfaces by forming a monolayer. The monolayer stabilizes the emulsion from coalescence due to its mechanical robustness. However, particle adsorption at the interface is dependent on particle shape, size, wettabilitiy, and inter-particle interaction as the particle needs to be wetted by both liquids. This dependents limits the usefulness of particle stabilization in certain applications.  
shaking an aqueous solution containing 5% sodium dodecylsulfate. The bubble shapes are
+
more polyhedral near the top, where the foam is dry, and more spherical near the bottom,
+
where the foam is wet. The average bubble size is about 2 mm. (Photo taken from Foams paper)]]
+
  
Bubbles are dispersed such that liquid thin films are surrounded by gas on both sides, forming a gas-liquid-gas interface. Neighboring bubble surfaces in a foam interact
+
An alternative strategy to drive surfactants to the liquid-liquid interface is to introduce chemical anisotropy to the stabilizing particles. That is to make the particles themselves amphihilic. Amphihilicity increases liquid-monolayer-liquid interactions due to greater size and greater chemical interaction. Therefore, truly amphiphilic molecules known as Janus particles better stabilize foams.  
through a variety of forces that depend on the composition and thickness of liquid
+
between them, and on the physical chemistry of their liquid–vapor interfaces. As a result, various interactions affect the stability of thin films. Foam stability therefore is primarily determined by the repulsion of bubble-bubble surfaces, allowing for a layer of liquid to be dispersed between two neighboring bubbles as short distances. Otherwise, the interaction terms will combine and form one bubble. As a result, foams can be considered (while determining stability)as vapor–liquid–vapor film structures formed between neighboring bubbles while considering the interface essentially
+
flat.
+
  
=== Disjoining Forces ===
+
Furthermore, the surface chemistry of the Janus particles are tunable to increase amphiphilicity and their level of stabilization.
  
A static pressure difference can be imposed between
+
[[Image:Synthesis of Amphiphilic Particle.jpg|thumb|Illustration of the synthesis of an amphiphilic particle dimer and how its properties are tunable.]]
gass-liquid-glass interfaces by several means including gravity. Therefore,
+
the equilibrium film thickness depends on the imposed pressure difference
+
and the effective interface potential. A disjoining pressire p arises when the film thickness
+
does not minimize the potential energy as a function of length, there arises a disjoining pressure p. This disjoining pressure drives the system toward mechanical equilibrium. In response to a hydrostatic
+
pressure, the film thickness thus adjusts itself so that the disjoining pressure
+
balances the applied pressure and mechanical equilibrium is restored.
+
  
This paper predicts the disjoining pressure versus film thickness using DLVO theory
+
=== Janus Particle Control ===
for an aqueous film containing 1 mM of 1:1 electrolyte. The equilibrium thickness of a
+
free film occurs when the effective interface potential is at a local minimum or when the disjoining pressure vanishes with a negative slope. Similar considerations are important for
+
establishing the distribution of liquid around several bubbles packed together
+
in a foam, and hence the bubble shapes. As presented in this paper, a thin-film balance apparatus allows
+
the creation and study of a single thin film, held on a horizontal support, and at
+
any applied pressure. This method therefore provides a means to measure the disjoining
+
pressures vs film thickness.
+
  
[[Image:Film Thickness vs Disjoining Pressure.jpg|thumb|Effective interface potential (left) and corresponding disjoining pressure (right)
+
Within this paper, stabilizing Janus particles are formed via a process that allows for the control of particle geometry and surface chemistry.  
vs film thickness as predicted by DLVO theory for an aqueous soap film containing 1 m
+
M of 1:1 electrolyte. (Graph taken from Foams paper)]]
+
  
The paper then continues to discuss that the interaction between neighboring bubble surfaces
 
in a thin flat film may not be accurately described by the simplest DLVO theory. However, their model nevertheless captures the forces at work. Specifically the large energy barrier,
 
which prevents two films approaching too closely. This energy barrier may
 
arise from electrostatic repulsion or it may arise from
 
other interactions. However, its role is primarily to prevent two films from
 
approaching sufficiently close that they fall into the deep attractive well. Therefore, it acts to stablize the foam. The
 
degree to which the two films are forced together by external forces determines
 
how high up the energy barrier they are forced; this is in turn parameterized by
 
the disjoining pressure. Should the repulsive barrier be overcome, the films fall into the attractive minimum, whereupon they coalesce. Thus this repulsive
 
barrier provides the essential stabilization of the foam.
 
  
=== Foam Structures ===
+
[[Image:Stabilization of Emulsion Drop with Various Particle Geometries.jpg|thumb|An image of the particle stabilzation of oil in water with differing geometries: a) spheres, b) ellipses, c) cylinders.]]
 
+
Foams depending on the concentration of liquid to vapor form various structures, depending on the "wetness" of the system. In very wet foams, a forth is formed as excess air bubbles rise to the surface of the liquid and pop. In wet foams, spherical bubbles are formed due to sufficiently strong repulsive interactions; as bubbles rise to the surface, they pack together. In dry foams, polyhedral bubbles result from the severe distortion of spherical bubbles resulting from the lack of liquid in the system.
+
 
+
=== Possible Applications ===
+
 
+
Foams have potential for application in many roles:
+
 
+
# Firefighting
+
# Food
+
# Separations
+
# Oil Recovery
+
# Detergents
+
# Textiles
+
# Cosmetics
+
  
 
== Discussion ==
 
== Discussion ==
  
This paper explains the formation of foams and how their stability can be examined by treating the interactions of the gas-liquid-gas interfaces as thin films. The paper is a great analysis of a real world system with possible applications. Furthermore, the paper links many topics this course discuses such as stability of thin films and surfactants.
+
This paper further investigates the driving force behind the adsorption of surfactants at the liquid-liquid interface and explains two types of surfactant stabilization. Furthermore, the paper examines the formation of Janus particles and provides a simple approach to controlling particle geometry and surface chemistry.
  
 
== Reference ==
 
== Reference ==
  
Saint-James, A., Durian, D. J., Weitz, D. A. and Updated by Staff 2012. Foams. Kirk-Othmer Encyclopedia of Chemical Technology. 1–24.
+
Kin, JW., Lee, Daeyeon, Shun, HC, Weitz, D. A. Colloid Surfactants for Emulsion Stabilization. Advanced Materials. 2008, 3239–3243. 10.1002/adma.200800484.

Latest revision as of 23:39, 25 November 2012

Entry by Grant Gonzalez, 25 Nov 2012

Colloid Surfactants for Emulsion Stabilization

Keywords: Adsorption, Foams, Surfactants

Authors: Jin-Woong Kim, Daeyeon Lee, Ho Cheung Shum, and David A. Weitz

Summary

This paper examines the use of classic solid particles to stabilize emulsions absorbed by wetting as well as the use of Janus particles to drive the adsorption of particles at the monolayer.

Surfactants that accumulate between two immisicible liquids stabilize the separation of the liquid interfaces by forming a monolayer. The monolayer stabilizes the emulsion from coalescence due to its mechanical robustness. However, particle adsorption at the interface is dependent on particle shape, size, wettabilitiy, and inter-particle interaction as the particle needs to be wetted by both liquids. This dependents limits the usefulness of particle stabilization in certain applications.

An alternative strategy to drive surfactants to the liquid-liquid interface is to introduce chemical anisotropy to the stabilizing particles. That is to make the particles themselves amphihilic. Amphihilicity increases liquid-monolayer-liquid interactions due to greater size and greater chemical interaction. Therefore, truly amphiphilic molecules known as Janus particles better stabilize foams.

Furthermore, the surface chemistry of the Janus particles are tunable to increase amphiphilicity and their level of stabilization.

Illustration of the synthesis of an amphiphilic particle dimer and how its properties are tunable.

Janus Particle Control

Within this paper, stabilizing Janus particles are formed via a process that allows for the control of particle geometry and surface chemistry.


An image of the particle stabilzation of oil in water with differing geometries: a) spheres, b) ellipses, c) cylinders.

Discussion

This paper further investigates the driving force behind the adsorption of surfactants at the liquid-liquid interface and explains two types of surfactant stabilization. Furthermore, the paper examines the formation of Janus particles and provides a simple approach to controlling particle geometry and surface chemistry.

Reference

Kin, JW., Lee, Daeyeon, Shun, HC, Weitz, D. A. Colloid Surfactants for Emulsion Stabilization. Advanced Materials. 2008, 3239–3243. 10.1002/adma.200800484.