Difference between revisions of "Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids"

From Soft-Matter
Jump to: navigation, search
Line 41: Line 41:
 
'''Surface-Tension-Induced Flow Methodology'''
 
'''Surface-Tension-Induced Flow Methodology'''
  
[[Image:surface-tension-induced-1.jpg]]
+
[[Image:surface-tension-induced-1.jpg]]  
 +
 
 +
This technique enable us to control the curvature of the top and the aspect ratio of the forming particles from two reasons. First, the capillary effect of the wetting solution and the formation of interfaces depend on the loading sequence. Secondly, the difference in densities of the solutions also determine the shape. Finally, the aspect ratio of the mold itself governs the resulting shape and size. In the sequence A depicted in the figure, PEG-DA was added on a patterned PDMS micromold and the excess was removed, then the n-hexadecane solution was added on top. The hydrophobicity of the wetting solution promotes higher wettability on the PDMS wall than the PEG-DA, which induces the capillary force on the mold surface. Consequently, the n-hexadecane moves down the well, pushing the PEG-DA solution away from the wall. Since the PEG-DA solution has to maintain its volume, the decrease in the width increases the height of the solution column.

Revision as of 23:19, 26 November 2011

Entry by Pichet Adstamongkonkul, AP 225, Fall 2011

Reference:

Title: Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids

Authors: Chang-Hyung Choi, Jinkee Lee, Kisun Yoon, Anubhav Tripathi, Howard A. Stone, David A. Weitz, and Chang-Soo Lee

Journal: Angewandte Chemie International Edition, 2010, Vol. 49, No. 42


Summary

There are attempts to manipulate the physical and chemical properties of polymeric particles to optimize their functions and applications. Conventional approaches include self-assembly, photolithography, stretching/deformation of spherical particles, microfluidics, and nonwetting template molding. However, more complex shapes are also more difficult to handle in a controlled manner. This paper demonstrates a novel method for synthesizing monodisperse particles with a variety of shapes and sizes via "surface-tension-induced flow". The authors loaded two solutions, a photocurable solution (polyethylene glycol diacrylate; PEG-DA) and a nonphotocurable wetting solution (n-hexadecane), into a micromold. By changing the loading sequence of the two solutions, one can form particles with different curvatures and aspect ratio through different contacting interfaces between soltuions, micromold wall surface, and air. Eventually, the photocurable solution is polymerized using UV light.

Advantages and Limitations of the Conventional Methods

Most current methods are limited to two-dimensional or spherical shapes, since the more complex shapes are harder to handle.

  • Bottom-up approaches
    • Based on self-assembly mechanisms such as
      • Liposome preparation
      • Heterogeneous polymerization
      • Colloid synthesis
    • Difficult to manipulate to control morphology and structure
  • Top-down approaches
    • Such as Photolithography
    • Inherently limited by the availability of materials - photolithography is not compatible with organic materials as the technique involves using harsh solvent in wet etching, high energy in ion etching, high-temperature baking, multiple steps for layers removal, and strong energy deposition.
  • Microfluidic platforms
    • Allows the formation of spherical, disks, plugs, rods according to the microchannels or photomask geometries and flow conditions
    • Several limitations
      • Fast solidification without deformation and channel adhesion are required
      • Morphologies of particles are limited by the channel or photomask geometries
  • Particle Replication In Nonwetting Templates (PRINT)
    • Developed to fabricate monodisperse particles with a wide range of size and shape
    • Reproducible and easy processing
    • A variety of materials can be used
    • Still difficult to produce three-dimensional shapes

Surface-Tension-Induced Flow Methodology

Surface-tension-induced-1.jpg

This technique enable us to control the curvature of the top and the aspect ratio of the forming particles from two reasons. First, the capillary effect of the wetting solution and the formation of interfaces depend on the loading sequence. Secondly, the difference in densities of the solutions also determine the shape. Finally, the aspect ratio of the mold itself governs the resulting shape and size. In the sequence A depicted in the figure, PEG-DA was added on a patterned PDMS micromold and the excess was removed, then the n-hexadecane solution was added on top. The hydrophobicity of the wetting solution promotes higher wettability on the PDMS wall than the PEG-DA, which induces the capillary force on the mold surface. Consequently, the n-hexadecane moves down the well, pushing the PEG-DA solution away from the wall. Since the PEG-DA solution has to maintain its volume, the decrease in the width increases the height of the solution column.