Difference between revisions of "Supramolecular Assembly of Biological Molecules Purified from Bovine Nerve Cells: from Microtubule Bundles and Necklaces to Neurofilament Networks"

From Soft-Matter
Jump to: navigation, search
(Summary)
(Summary)
Line 14: Line 14:
 
==Summary==
 
==Summary==
  
Needleman et al. examine the behavior of neurofilaments (NFs) <i>in vitro</i> in solutions containing different polyelectrolytes (i.e., in different salt solutions). In short, they found that the NFs formed hexagonal bundles in solutions with containing cations with a greater charge and larger size, while the NFs formed what the authors term "living necklace bundles" in solutions containing bivalent cations (Figure 1).
+
Needleman et al. examine the behavior of neurofilaments (NFs) <i>in vitro</i> in solutions containing different polyelectrolytes (i.e., in different salt solutions). In short, they found that the NFs formed hexagonal bundles in solutions with containing cations with a greater charge and larger size, while the NFs formed what the authors term "living necklace bundles" in solutions containing bivalent cations (Figure 1). The authors go on to quantify this bundling via scattering experiments, although optical and electron micrographs seem to sufficiently reveal the bundling behaviors.

Revision as of 02:25, 18 March 2009

Zach Wissner-Gross (March 16, 2009)

Information

Supramolecular assembly of biological molecules purified from bovine nerve cells: from microtubule bundles and necklaces to neurofilament networks

Daniel J. Needleman, Janya B. Jones, Uri Raviv, Miguel A. Ojeda-Lopez, H. P. Miller, Y. Li, L. Wilson, and C. R. Safinya

Journal of Physics: Condensed Matter, 2005, 17, S3225-S3230

Soft matter keywords

Self-assembly, packing structure

Summary

Needleman et al. examine the behavior of neurofilaments (NFs) in vitro in solutions containing different polyelectrolytes (i.e., in different salt solutions). In short, they found that the NFs formed hexagonal bundles in solutions with containing cations with a greater charge and larger size, while the NFs formed what the authors term "living necklace bundles" in solutions containing bivalent cations (Figure 1). The authors go on to quantify this bundling via scattering experiments, although optical and electron micrographs seem to sufficiently reveal the bundling behaviors.