Difference between revisions of "Structural rearrangements that govern flow in colloidal glasses"

From Soft-Matter
Jump to: navigation, search
Line 13: Line 13:
 
[[Image:cglass_setup.png|thumb|Diagram of experimental setup.]]
 
[[Image:cglass_setup.png|thumb|Diagram of experimental setup.]]
 
The stacks revealed how the colloidal glass rearranged over the course of 20 minutes. The authors find that the strain is oscillatory, which they attribute to brownian motion. To confirm this, the authors analyze the glass in small cubic sections and measure the elastic energies. From this, they find that the distribution is exponential as indicated by the linearity of the semi-log graph in Figure 2.  
 
The stacks revealed how the colloidal glass rearranged over the course of 20 minutes. The authors find that the strain is oscillatory, which they attribute to brownian motion. To confirm this, the authors analyze the glass in small cubic sections and measure the elastic energies. From this, they find that the distribution is exponential as indicated by the linearity of the semi-log graph in Figure 2.  
[[Image:cglass_setup.png|thumb|Graph of relative frequency vs energy.]]
+
[[Image:Cglass_freq.png|thumb|Graph of relative frequency vs energy.]]
  
 
The use what appears to be a Maxwell-Boltzmann distribution to associate the frequency to the energy, temperature and shear modulus (<math>\mu</math>,) <math>ln(f(E)=\mu \frac{E}{\mu k_B T}</math>.
 
The use what appears to be a Maxwell-Boltzmann distribution to associate the frequency to the energy, temperature and shear modulus (<math>\mu</math>,) <math>ln(f(E)=\mu \frac{E}{\mu k_B T}</math>.

Revision as of 02:33, 27 February 2009

Peter Schall, David A. Weitz, Frans Spaepen Science 318, 1895 (2007)

Soft Matter Keywords

Colloid, Glass

Abstract

Soft Matter Example

Experiment

The authors created a glass out of silica spheres <math>1.5 \mu m</math> radius spheres. The spheres were collected on a coverslip by centrifrugation at a packing faction of 0.61, which is higher than needed to created a glass and at a height of <math>42 \mu m</math>. A water-dimethylsulfoxide-fluorescein mixture was used to index match the spheres and then to contrast the spheres against the solvent. Then with the top stabilized, the coverslip at the bottom is sheared at rates about <math>10^{-5}s^{-1}</math>. The authors then recorded 3 Dimensional stacks using confocal microscopy.

Diagram of experimental setup.

The stacks revealed how the colloidal glass rearranged over the course of 20 minutes. The authors find that the strain is oscillatory, which they attribute to brownian motion. To confirm this, the authors analyze the glass in small cubic sections and measure the elastic energies. From this, they find that the distribution is exponential as indicated by the linearity of the semi-log graph in Figure 2.

Graph of relative frequency vs energy.

The use what appears to be a Maxwell-Boltzmann distribution to associate the frequency to the energy, temperature and shear modulus (<math>\mu</math>,) <math>ln(f(E)=\mu \frac{E}{\mu k_B T}</math>.