Difference between revisions of "Spatial cooperativity in soft glassy flows"
Chakraborty (Talk | contribs) |
Chakraborty (Talk | contribs) |
||
Line 3: | Line 3: | ||
==Keywords== | ==Keywords== | ||
− | spatial cooperativity, glass, velocity profile, shear stress, shear strain, Couette cell | + | spatial cooperativity, glass, velocity profile, shear stress, shear strain, Couette cell, Herschel-Bulkley model |
==Summary== | ==Summary== | ||
Line 13: | Line 13: | ||
A general feature of glassy materials is a strong nonlinear flow rule relating stress and strain. This feature is no well-documented and poorly understood. Many have tried to understand the glass transition by studying the dynamical heterogeneities in glass-forming materials, but how these heterogeneities affect flow remains unclear. Using a local velocity measurement technique, the authors study the local flow of a film of confined glassy material. | A general feature of glassy materials is a strong nonlinear flow rule relating stress and strain. This feature is no well-documented and poorly understood. Many have tried to understand the glass transition by studying the dynamical heterogeneities in glass-forming materials, but how these heterogeneities affect flow remains unclear. Using a local velocity measurement technique, the authors study the local flow of a film of confined glassy material. | ||
− | The authors test flow in two main geometries: shear planar flow in a wide gap Couette cell, and pressure driven planar flow in a narrow microchannel (tens of hundreds micrometers in width). The substance tested was an emulsion of silicone droplets (6.5um in diameter) in a glycerine-water mixture. The local flow curves, which relate the local shear stress <math>\sigma</math> to the local shear rate <math>\dot{\gamma}</math>, are obtained from the measured velocity profiles of both geometries. Figure 1 shows the results for the wide-gap Couette cell, and Figure 2 shows the results for the narrow microchannel. Evidently, the flow curve is highly dependent on the geometry. In the wide-gap case, the curve follows the Herschel-Bulkley model. | + | The authors test flow in two main geometries: shear planar flow in a wide gap Couette cell, and pressure driven planar flow in a narrow microchannel (tens of hundreds micrometers in width). The substance tested was an emulsion of silicone droplets (6.5um in diameter) in a glycerine-water mixture. The local flow curves, which relate the local shear stress <math>\sigma</math> to the local shear rate <math>\dot{\gamma}</math>, are obtained from the measured velocity profiles of both geometries. Figure 1 shows the results for the wide-gap Couette cell, and Figure 2 shows the results for the narrow microchannel. Evidently, the flow curve is highly dependent on the geometry. In the wide-gap case, the curve follows the Herschel-Bulkley model. However, in the microchannel setup, the data does not follow a single rheological curve. The finite-size effect in the microchannel setup which did not appear in the wide-gap setup suggests that there are extended spatial correlations in the system. |
+ | |||
+ | The authors checked that the change in rheology is not caused by a structural change in the emulsion, nor a change in density, nor boundary effects. In order to explain this finite-size effect, they developed a model considering the plastic rearrangements that occur in concentrated emulsions. Localized plastic events induce a non-local, long-range elastic relaxation of the stress over the system. |
Revision as of 07:31, 6 December 2009
Reference
Goyon, J., Colin, A., Ovarlez, G., Ajdari, A., Bocquet, L., Nature 454 (2008).
Keywords
spatial cooperativity, glass, velocity profile, shear stress, shear strain, Couette cell, Herschel-Bulkley model
Summary
A general feature of glassy materials is a strong nonlinear flow rule relating stress and strain. This feature is no well-documented and poorly understood. Many have tried to understand the glass transition by studying the dynamical heterogeneities in glass-forming materials, but how these heterogeneities affect flow remains unclear. Using a local velocity measurement technique, the authors study the local flow of a film of confined glassy material.
The authors test flow in two main geometries: shear planar flow in a wide gap Couette cell, and pressure driven planar flow in a narrow microchannel (tens of hundreds micrometers in width). The substance tested was an emulsion of silicone droplets (6.5um in diameter) in a glycerine-water mixture. The local flow curves, which relate the local shear stress <math>\sigma</math> to the local shear rate <math>\dot{\gamma}</math>, are obtained from the measured velocity profiles of both geometries. Figure 1 shows the results for the wide-gap Couette cell, and Figure 2 shows the results for the narrow microchannel. Evidently, the flow curve is highly dependent on the geometry. In the wide-gap case, the curve follows the Herschel-Bulkley model. However, in the microchannel setup, the data does not follow a single rheological curve. The finite-size effect in the microchannel setup which did not appear in the wide-gap setup suggests that there are extended spatial correlations in the system.
The authors checked that the change in rheology is not caused by a structural change in the emulsion, nor a change in density, nor boundary effects. In order to explain this finite-size effect, they developed a model considering the plastic rearrangements that occur in concentrated emulsions. Localized plastic events induce a non-local, long-range elastic relaxation of the stress over the system.