Difference between revisions of "Soft colloids make strong glasses"

From Soft-Matter
Jump to: navigation, search
Line 5: Line 5:
 
----
 
----
 
reference: [http://www.nature.com/nature/journal/v462/n7269/full/nature08457.html]
 
reference: [http://www.nature.com/nature/journal/v462/n7269/full/nature08457.html]
 +
 +
 +
 +
There is similarity between hard sphere colloids and molecular systems, when it comes to glass formation. For hard sphere colloids, the glass phase transition is controlled by an increase in volume fraction, and for molecular systems, it is controlled by a decrease in temperature. The difference is that molecular glasses exhibit a wider variety of behavior when the supercooled molecular liquids approach glassy state. These behaviors include viscosity and structural relaxation time, or in general called "fragility".
 +
 +
For fragile molecular liquids, the relaxation time is highly sensitive to changes in temperature, while for non-fragile, or strong molecular liquids, the relaxation time has a lower temperature dependence. On the other hand, hard sphere colloids are characterized as fragile, and limited by their volume fraction dependence. This fragile nature limits the use of hard sphere colloids in glass formation.
 +
 +
This paper demonstrates that instead of using hard sphere colloids, soft sphere colloids (deformable) can exhibit the same amount of variation in fragility by varying their concentration at fixed temperature as molecular liquids by varying the temperature at fixed volume. The fragility of these soft sphere colloids is determined by the elastic properties of the individual particles. This relation between fragility and elasticity also has an analogy in molecular liquids.

Revision as of 02:54, 28 September 2010

Edited by Qichao Hu

September 27th, 2010


reference: [1]


There is similarity between hard sphere colloids and molecular systems, when it comes to glass formation. For hard sphere colloids, the glass phase transition is controlled by an increase in volume fraction, and for molecular systems, it is controlled by a decrease in temperature. The difference is that molecular glasses exhibit a wider variety of behavior when the supercooled molecular liquids approach glassy state. These behaviors include viscosity and structural relaxation time, or in general called "fragility".

For fragile molecular liquids, the relaxation time is highly sensitive to changes in temperature, while for non-fragile, or strong molecular liquids, the relaxation time has a lower temperature dependence. On the other hand, hard sphere colloids are characterized as fragile, and limited by their volume fraction dependence. This fragile nature limits the use of hard sphere colloids in glass formation.

This paper demonstrates that instead of using hard sphere colloids, soft sphere colloids (deformable) can exhibit the same amount of variation in fragility by varying their concentration at fixed temperature as molecular liquids by varying the temperature at fixed volume. The fragility of these soft sphere colloids is determined by the elastic properties of the individual particles. This relation between fragility and elasticity also has an analogy in molecular liquids.