Semi-permeable vesicles composed of natural clay

From Soft-Matter
Revision as of 19:24, 29 October 2011 by Daniel (Talk | contribs)

Jump to: navigation, search

Introduction

The authors report a way to produce semi-permeable vesicles from montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Simple shearing forces can assemble an aqueous suspension of montmorillonite clay plates onto air bubbles producing clay-armoured bubbles. Replacing the water with organic liquids will displace the air pocket inside the clay-armour with the liquid forming vesicles. Clay vesicles are microporous, exhibit size-selective permeability. This is the first time that any group has demonstrated self-assembly of inorganic minerals into structured compartments.

Results

Clay armoured bubbles are produced by sandwiching a suspension of clay plates and air bubbles between two glass slides, and sliding them. The trapped air bubble will gather sufficient clay plates to form clay-armoured bubbles. A schematic is shown in the figure below. The bubbles range from 5 to 100 microns in radius. The clay armoured bubbles can created by sliding this bubbly clay suspension between other hydrophilic suspensions such as aluminum, copper and stainless steel.

Clay1.png

Thin-shell vesicles of clay can then be produced by exposing the clay-armoured bubbles to certain water-miscible organic liquids. The picture below shows a detailed image of the clay vesicles. Note that there are pores on the vesicles which allow for it to act as a semi-permeable membrane.

Clay2.png

The formation of clay vesicles can be rationalized from partial to complete wetting of clay aggregates by the outer fluid. The parameter that determines whether the air bubble will be displaced by the outer fluid is S, the spreading coefficient. If S > 0, clay vesicles will be formed, whereas if S < 0, there will be no transition from clay-armoured bubbles to vesicles. This is illustrated in figure 8. The nano-plates are stabilized by van der waal's interactions, i.e. they are in a potential minimum. But there are always defects where the nano-plates are not at a minimum. These defects turn into pores when the nano-plates are dislodged as the outer fluid enters the clay armoured bubbles. This is depicted in figure 6.

Clay3.png

Clay4.png


Clay5.png

My Thoughts

References

1. A.B. Subramaniam, J. Wan, A. Gopinath and H.A. Stone, "Semi-permeable vesicles composed of natural clay", Soft Matter, 2011, 7, 2600-2612

2. M.M. Hanczyc, S.M. Fujikawa and J.W. Szostak, "Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division", Science, 2003, 302 5645, 618-622