Difference between revisions of "Semi-permeable vesicles composed of natural clay"
(→Introduction) |
(→Introduction) |
||
Line 1: | Line 1: | ||
==Introduction== | ==Introduction== | ||
− | The authors report a way to produce semi-permeable vesicles from montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. | + | The authors report a way to produce semi-permeable vesicles from montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Simple shearing forces can assemble an aqueous suspension of montmorillonite clay plates onto air bubbles producing clay-armoured plates. Replacing the water with organic liquids will displace the air pocket inside the clay-armour with the liquid forming vesicles. Clay vesicles are microporous, exhibit size-selective permeability. This is the first time that any group has demonstrated self-assembly of inorganic minerals into structured compartments. |
==Results== | ==Results== |
Revision as of 17:27, 29 October 2011
Contents
Introduction
The authors report a way to produce semi-permeable vesicles from montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Simple shearing forces can assemble an aqueous suspension of montmorillonite clay plates onto air bubbles producing clay-armoured plates. Replacing the water with organic liquids will displace the air pocket inside the clay-armour with the liquid forming vesicles. Clay vesicles are microporous, exhibit size-selective permeability. This is the first time that any group has demonstrated self-assembly of inorganic minerals into structured compartments.
Results
My Thoughts
References
1. A.B. Subramaniam, J. Wan, A. Gopinath and H.A. Stone, "Semi-permeable vesicles composed of natural clay", Soft Matter, 2011, 7, 2600-2612
2. M.M. Hanczyc, S.M. Fujikawa and J.W. Szostak, "Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division", Science, 2003, 302 5645, 618-622