Rheometry

From Soft-Matter
Revision as of 02:03, 5 December 2008 by Nefeli (Talk | contribs) (Cone and plate rheometer)

Jump to: navigation, search

Back to Topics.

Introduction

Top of Page


Couette viscometer

Top of Page


Cone and plate rheometer

Rheometer.jpg Cone and plate.jpg


Top of Page


Poiseuille flow

Top of Page


Falling ball and rising bubble viscosimeters

Top of Page


Bubble rise in complex fluids

Top of Page


Creep of ice

Flocculated suspensions

Top of Page


Size limitations in viscosity measurements

There was a question in class on the lower limit of samples where rheological properties may be measured. The Suhling lab at King's College recently announced in JACS that they can observe the viscosity in human ovarian carcinoma cell line SK-OV-3 using a fluorescent probe called a molecular rotor. Essentially, in a medium of high viscosity, the rotational Brownian motion of the the rotor as a whole is slowed down. This slowing increases linearly and can be used to accurately determine the viscosity of the cytoplasm of a cell. Their technique uses fluorescence lifetime imaging, and allows them to analyze fluorescent decays as a function of viscosity in spatially resolved manner; this can show valuable information on the inhomogeneity of the intracellular viscosity.

The case for measuring intracellular viscosity is made in their introduction, reproduced below:

"Viscosity is one of the major parameters determining the diffusion rate of species in condensed media. In biosystems, changes in viscosity have been linked to disease and malfunction at the cellular level.1 These perturbations are caused by changes in mobility of chemicals within the cell, influencing fundamental processes such as signaling and transport and the efficiency of bimolecular processes governed by diffusion of short-lived intermediates, such as the diffusion of reactive oxygen species during an oxidative stress attack. While methods to measure the bulk macroscopic viscosity are well developed, imaging local microscopic viscosity remains a challenge, and viscosity maps of microscopic objects, such as single cells, are actively sought after.2–6 We report a new approach to image local microviscosity using the fluorescence lifetime of a molecular rotor.literature data for similar compounds."

Paper, Supplemental, Newsy Article


Top of Page


Back to Topics.