Difference between revisions of "Profile of a large drop"

From Soft-Matter
Jump to: navigation, search
Line 14: Line 14:
  
 
<center><math>2\kappa\approx 3.5 \text{mm}</math></center>
 
<center><math>2\kappa\approx 3.5 \text{mm}</math></center>
 +
 +
Nevertheless, the bottom left corner of the 179 degree profile does resemble a quarter-circle.

Revision as of 18:06, 18 February 2009

In class we derived the profile <math>z(x)</math> of a large drop as being:

<math>\sigma_{lv}(\frac{1}{\sqrt{1+\dot{z}^2}}-\cos\theta_e)=\frac{1}{2}\rho g(2ez-z^2)</math>

where we had defined <math>e</math> as being the maximum height of the drop:

<math>e=2\kappa^{-1}\sin{\frac{\theta_e}{2}}</math>

and <math>\kappa=\sqrt{\frac{\rho g}{\sigma_{lv}}}</math> was the inverse capillary length.

To visualize what the edge of a large drop then looks like, you can use the following two MATLAB programs, which will solve and plot the above differential equation. Figure 1 also shows what some of these plots look like.

In class we had a brief discussion as to the nature of the drop's periphery on superhydrophobic surfaces. In the superhydrophobic limit (i.e., as <math>\theta_e</math> approaches 180 degrees), will the edge of the drop have a semicircular shape? The shape is apparently not semicircular at 179 degrees, since the horizontal range of the drop is only 1 mm, while it vertically extends to a height of

<math>2\kappa\approx 3.5 \text{mm}</math>

Nevertheless, the bottom left corner of the 179 degree profile does resemble a quarter-circle.