Difference between revisions of "Phase Behavior and Rheology of Attractive Rod Like Particles"

From Soft-Matter
Jump to: navigation, search
(Summary)
(Summary)
Line 10: Line 10:
 
Debye Length
 
Debye Length
  
[[image: Figure2RodLike.png]]
+
[[image: Figure2RodLike.png |200px|thumb|left|Figure 2 from [1] ]]
  
 
The researchers compared two samples: a) a low concentration of rod-like particles (9.6 mg/ml) which is isotropic, and b) a higher concentration of rod-like particles (21 mg/ml) which has nematic structure. Both solutions have an ionic strength of 144mM.
 
The researchers compared two samples: a) a low concentration of rod-like particles (9.6 mg/ml) which is isotropic, and b) a higher concentration of rod-like particles (21 mg/ml) which has nematic structure. Both solutions have an ionic strength of 144mM.

Revision as of 16:57, 4 November 2009

Overview

  • [1] Huang, F., Rotstein, R., Fraden, S., Kasza, K., & Flynn, N. Soft Matter. 5, 2766-2771 (2009).
  • Keywords: Isotropic, Nematic, Viscoelastic, Sol-Gel Transition, Colloidal Rods, Phase Transition

Summary

Huang, Rotstein, Fraden, Kasza, and Flynn study an aqueous solution of rod-shaped particles to look for transitions between isotropic, nematic, liquid, and gel states. For this experiment, Huang et al. create particles consisting of bacteriofage fd coated with poly(N-isopropylacrylamide) (PNIPAM). The researchers use both rheological measurements and light scattering measurements to characterize the solutions which do not agree with previous theory.

The bacteriofage fd (a polymer with negative surface charge) is itself approximately rod-shaped. The researchers coat the bacteriofage fd with the polymer PNIPAN to give the particle-particle interactions a temperature dependence. The temperature dependence of solubility of PNIPAM and bacteriofage fd are different.

Debye Length

Figure 2 from [1]

The researchers compared two samples: a) a low concentration of rod-like particles (9.6 mg/ml) which is isotropic, and b) a higher concentration of rod-like particles (21 mg/ml) which has nematic structure. Both solutions have an ionic strength of 144mM.

-salt and temperature varied -20 degrees to 200 degrees C -debye length -sol-gel transition -comparison to predictions

Soft Matter Details

Experimental Methods:

Dynamic Light Scattering

Rheology

Phase Behavior:

Open Questions/Ongoing Research: