# Difference between revisions of "Pair Distribution Function"

(New page: For a system with N particles, the ''configurational distribution function'', <math>F_N(r_1,...,r_N)</math>, of the system appears in the nature of a probability density and satisfies the ...) |
|||

Line 1: | Line 1: | ||

− | For a system with N particles, the ''configurational distribution function'', <math>F_N(r_1,...,r_N)</math>, of the system appears in the nature of a probability density and satisfies the normalizaiton condition | + | For a system with N particles, the ''configurational distribution function'', <math>F_N(r_1,...,r_N)</math>, of the system appears in the nature of a probability density and satisfies the normalizaiton condition |

− | <math>\int F_N(r_1,...,r_N) d^3r_1 ... d^3r_N =1</math> | + | |

+ | <math>\int F_N(r_1,...,r_N) d^3r_1 ... d^3r_N =1</math>. | ||

+ | |||

+ | Integrating <math>F_N(r_1,...,r_N)</math> over the coordinates <math>r_2</math>, ..., <math>r_N</math> and multiplying the result by ''N'', a single particle distribution function can be obtained | ||

+ | |||

+ | <math>F_1(r_1)= N \int F_N(r_1,...,r_N) d^3r_2 ... d^3r_N =n(r_1)</math>. | ||

+ | |||

+ | The function <math>F_1(r_1)</math> represents the particle density at the point <math>r_1</math>. | ||

+ | The two-particle distribution function is now defined as | ||

+ | |||

+ | <math>F_2(r_1,r_2)= N (N-1) \int F_N(r_1,...,r_N) d^3r_3 ... d^3r_N =n^2 g(r)</math>, | ||

+ | |||

+ | where <math>r=r_2-r_1</math>. The above equation defines the ''pair distribution funciton'' <math>g(r)</math> of the system. The product <math>g(r) d^3r</math> determines the probability of finding a particle in the volume element <math>d^3r</math> around the point <math>r</math> when there has been a particle at the point <math>r=0</math> |

## Revision as of 03:42, 25 October 2009

For a system with N particles, the *configurational distribution function*, <math>F_N(r_1,...,r_N)</math>, of the system appears in the nature of a probability density and satisfies the normalizaiton condition

<math>\int F_N(r_1,...,r_N) d^3r_1 ... d^3r_N =1</math>.

Integrating <math>F_N(r_1,...,r_N)</math> over the coordinates <math>r_2</math>, ..., <math>r_N</math> and multiplying the result by *N*, a single particle distribution function can be obtained

<math>F_1(r_1)= N \int F_N(r_1,...,r_N) d^3r_2 ... d^3r_N =n(r_1)</math>.

The function <math>F_1(r_1)</math> represents the particle density at the point <math>r_1</math>. The two-particle distribution function is now defined as

<math>F_2(r_1,r_2)= N (N-1) \int F_N(r_1,...,r_N) d^3r_3 ... d^3r_N =n^2 g(r)</math>,

where <math>r=r_2-r_1</math>. The above equation defines the *pair distribution funciton* <math>g(r)</math> of the system. The product <math>g(r) d^3r</math> determines the probability of finding a particle in the volume element <math>d^3r</math> around the point <math>r</math> when there has been a particle at the point <math>r=0</math>