Difference between revisions of "On-chip natural assembly of silicon photonic bandgap crystals"

From Soft-Matter
Jump to: navigation, search
Line 15: Line 15:
 
[[image: Iantopic8.jpg]]
 
[[image: Iantopic8.jpg]]
  
The photonic crystals were characterized by optical reflection spectroscopy in both the [111] and [100] directions. A region of 100% reflection was observed in both directions, confirming the prediction from modeling of an omnidirectional bandgap.  
+
The photonic crystals were characterized by optical reflection spectroscopy in both the [111] and [100] directions. A region of 100% reflection was observed in both directions, confirming the prediction from modeling of an omnidirectional bandgap. Defects in such a crystal allow for wavelength-scale confinement of light in the defect region, and can behave as high-quality-factor optical resonators with ultrasmall modal volumes. The authors demonstrate such defect engineering by adding spheres of a smaller size to the solution before deposition. This translates into randomly placed point defects in the opal and thus the inverse opal. The authors further demonstrate that these photonic crystals can be patterned on a large scale on chip using conventional photolithography and reactive-ion etching of Si.
  
 
== Soft-Matter Discussion ==
 
== Soft-Matter Discussion ==

Revision as of 20:14, 23 November 2009

Under Construction

Original Entry: Ian Bruce Burgess Fall 2009


References

1. Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, D.J. Norris, Nature 414, 289-293 (2001).

2. A. Blanco et al., Nature 405, 437-440 (2000).

Summary

This paper describes the fabrication of a silicon 3D photonic crystal with sufficiently low defect densities to maintain the complete bandgap over a large volume. The structure is fabricated by infiltrating a thin-layer silica colloidal crystal with Si by low pressure chemical vapor deposition, and then removing the template of the colloidal crystal using buffered oxide etching. This additional step is required to achieve the refractive index contrast required for a complete 3D bandgap (>2.8:1). What allows improved crystal quality in the colloidal opals over previous work [2], is the use of the meniscus-driven vertical deposition technique as opposed to gravitationally-driven sedimentation. The figure below shows the colloidal crystal (left) and the inverted Si photonic crystal (right).

Iantopic8.jpg

The photonic crystals were characterized by optical reflection spectroscopy in both the [111] and [100] directions. A region of 100% reflection was observed in both directions, confirming the prediction from modeling of an omnidirectional bandgap. Defects in such a crystal allow for wavelength-scale confinement of light in the defect region, and can behave as high-quality-factor optical resonators with ultrasmall modal volumes. The authors demonstrate such defect engineering by adding spheres of a smaller size to the solution before deposition. This translates into randomly placed point defects in the opal and thus the inverse opal. The authors further demonstrate that these photonic crystals can be patterned on a large scale on chip using conventional photolithography and reactive-ion etching of Si.

Soft-Matter Discussion