Difference between revisions of "New directions in mechanics"

From Soft-Matter
Jump to: navigation, search
(Self Assembly and Fluidics)
(Self Assembly and Fluidics)
Line 24: Line 24:
  
 
A variety of experimental systems were discussed as well, including Evaporation-Induced Self-Assembly (EISA), Molecular assembly on solid surfaces, and the "molecular car." I am more interested in the theory and broad ideas, so I will focus on those, however.
 
A variety of experimental systems were discussed as well, including Evaporation-Induced Self-Assembly (EISA), Molecular assembly on solid surfaces, and the "molecular car." I am more interested in the theory and broad ideas, so I will focus on those, however.
 +
 +
===Mechanics in Biological, Bioinspired and Hyprid Material Systems===
  
 
==Discussion==
 
==Discussion==

Revision as of 02:47, 7 November 2012

Original entry by Bryan Weinstein, Fall 2012

General Information

Authors: M. Kassner, S. Nemat-Nasser, Z. Suo, et al.

Keywords: Thin film, Self-Assembly, Modeling, Fracture, Workshop, Review

Summary

In 2005, the US Department of Energy (DOE) sponsored a workshop to identify areas of research that depended on advances in theoretical and applied mechanics. Three broad areas of research were discussed.

Self Assembly and Fluidics

Ultimately, scientists hope to create self-assembled structures that resemble life itself. The structures will be multi-functional and will have self-preserving attributes such as "healing, self-sensing, and replication." Fluidics will be a large part of these structures. In 2005 (and today), the most advanced self-assembly techniques were capable of producing strain-induced quantum dots. Clearly, scientists are far away from creating structures that will mimic life itself. The authors of this paper argue that our understanding of self-assembly is not advanced enough to predict the future of the field.

One challenge that scientists face when studying self-assembly are huge variations in length and time scales. One must extend the effect of microscopic behaviors to the macroscopic regime; this is a difficult task. Several theories have been developed to handle this problem, such as "molecular dynamics (MD), Monte Carlo (MD), and Density Functional Theory (DFT)."

New statistical-mechanics techniques are being developed to tackle this problem as well. Most methods thus far have focused on the "forward" problem of statistical mechanics: finding the macroscopic properties of a large many-body system given the interactions between each particle. The new methods focus on the "inverse problem:" finding the interactions between each particle that lead to a specified structure. One researcher active in this area is Dr. Sorquato at Princeton (I really like his work).

A series of images from a simulation that evolves submonolayer patterns. Over time, beautiful structures are formed.

Nanofluidics is an emerging area of fluidics. Scientists do not yet understand what happens to a liuid film when its thickness is approximately the same as the molecules themselves. Clearly, at this scale, continuum models of fluids do not apply. This area is still not particularly well understood; much of the results have been phenomenological. Increasingly sophisticated experimental techniques (i.e. powerful x-ray imaging techniques) will hopefully elucidate this issue.

A variety of experimental systems were discussed as well, including Evaporation-Induced Self-Assembly (EISA), Molecular assembly on solid surfaces, and the "molecular car." I am more interested in the theory and broad ideas, so I will focus on those, however.

Mechanics in Biological, Bioinspired and Hyprid Material Systems

Discussion

References

[1] Kassner, M. E. et al. New directions in mechanics. Mechanics of Materials 37, 231–259 (2005).