Microoxen: Microorganisms to Move Microscale Loads.
From Soft-Matter
"Microoxen: Microorganisms to Move Microscale Loads"
Douglas B. Weibel, Piotr Garstecki, Declan Ryan, Willow R. DiLuzio, Michael Mayer, Jennifer E. Seto, & George M. Whitesides
PNAS 102(34) 11963-11967 (2005)
Contents
Soft Matter Keywords
algae, phototaxis, photochemistry, beast of burden

Figure 1. Transport system used in this experiment. (A) Power (1-7) and recovery (8-11) strokes of algae. (B) Structure of the peptide used to attach beads to cells. (C) Reaction used to produce peptide-coated beads. (D) Micrograph of bead attached to algae cell. The bead is attached to the cell slightly above the current focal plane and so appears slightly out of focus.

Figure 2. (A)&(B) Schematics of LED/microfluidic channels used to steer the algae. (C) Image of bead attached to algae cell. (D)-(O) Series of frames showing a cell carrying a bead being steered back and forth in the microfluidic channel using positive phototaxis (cell is attracted to the LED that is on).
Summary
asdgadfs
Practical Application of Research
asdas
Moving Loads with Tiny Oxen
aafdsd
written by Donald Aubrecht