Difference between revisions of "Microoxen: Microorganisms to Move Microscale Loads."

From Soft-Matter
Jump to: navigation, search
Line 12: Line 12:
  
 
== Summary ==
 
== Summary ==
The authors detail a very novel approach to transporting small payloads using biological motors.  Instead of attaching synthesized motors to a load, Weibel, et al. attach the load to an organism.  This allows them to steer the transport of the load by controlling the locomotion of the organism.  In this case, the unicellular photosynthetic algae ''Chlamydomonas reinhardtii'' was chosen for its robust locomotion and phototactic characteristics.
+
The authors detail a very novel approach to transporting small payloads using biological motors.  Instead of attaching synthesized motors to a load, Weibel, et al. attach the load to an organism.  This allows them to steer the transport of the load by controlling the locomotion of the organism.  In this case, the unicellular photosynthetic algae ''Chlamydomonas reinhardtii'' was chosen for its robust locomotion and phototactic characteristics.  The simulated loads in these experiments were surface modified polystyrene beads.  The peptide used to attach the bead to the algae cell contained a photo-active group that allows the bead to be cleaved from the cell when exposed to UV light of the appropriate wavelength.  In this way, the beads can be delivered to a particular location and then deposited.  
  
 
== Practical Application of Research ==
 
== Practical Application of Research ==

Revision as of 13:00, 22 April 2009

"Microoxen: Microorganisms to Move Microscale Loads"
Douglas B. Weibel, Piotr Garstecki, Declan Ryan, Willow R. DiLuzio, Michael Mayer, Jennifer E. Seto, & George M. Whitesides
PNAS 102(34) 11963-11967 (2005)


Soft Matter Keywords

algae, phototaxis, photochemistry, beast of burden

Figure 1. Transport system used in this experiment. (A) Power (1-7) and recovery (8-11) strokes of algae. (B) Structure of the peptide used to attach beads to cells. (C) Reaction used to produce peptide-coated beads. (D) Micrograph of bead attached to algae cell. The bead is attached to the cell slightly above the current focal plane and so appears slightly out of focus.
Figure 2. (A)&(B) Schematics of LED/microfluidic channels used to steer the algae. (C) Image of bead attached to algae cell. (D)-(O) Series of frames showing a cell carrying a bead being steered back and forth in the microfluidic channel using positive phototaxis (cell is attracted to the LED that is on).
Figure 3. (A) Photo reaction that will cleave beads from algae cells. (B)-(M) Time series showing release of a bead from a cell carrying two beads. The cell was illuminated with UV light for 20 seconds before frame (B) and the time between frames is 2 seconds.

Summary

The authors detail a very novel approach to transporting small payloads using biological motors. Instead of attaching synthesized motors to a load, Weibel, et al. attach the load to an organism. This allows them to steer the transport of the load by controlling the locomotion of the organism. In this case, the unicellular photosynthetic algae Chlamydomonas reinhardtii was chosen for its robust locomotion and phototactic characteristics. The simulated loads in these experiments were surface modified polystyrene beads. The peptide used to attach the bead to the algae cell contained a photo-active group that allows the bead to be cleaved from the cell when exposed to UV light of the appropriate wavelength. In this way, the beads can be delivered to a particular location and then deposited.

Practical Application of Research

asdas

Moving Loads with Tiny Oxen

aafdsd


written by Donald Aubrecht