Difference between revisions of "Micro!uidic fabrication of smart microgels from macromolecular precursors"

From Soft-Matter
Jump to: navigation, search
(Page Currently Being Edited by Joseph Muth)
(Overview)
Line 3: Line 3:
 
==Overview==
 
==Overview==
 
Stimuli-responsive (smart) microgels are micron sized polymer particles that change shape in response to enviornmental stimuli. This responsiveness makes them useful in the fields of drug delivery, catalysis, sensing, and photonics. The most commonly used smart microgel material is poly(N-isopropylacrylamide) (pNIPAAm) because it has a lower critical solution temperature (LCST) around 32°C. Both the LCST and Tg of (pNIPAAm) are readily tunable by changing its composition or its particle geometry. As such controlling each of these aspects independently is critical to optimizing the characteristics of the microgel.
 
Stimuli-responsive (smart) microgels are micron sized polymer particles that change shape in response to enviornmental stimuli. This responsiveness makes them useful in the fields of drug delivery, catalysis, sensing, and photonics. The most commonly used smart microgel material is poly(N-isopropylacrylamide) (pNIPAAm) because it has a lower critical solution temperature (LCST) around 32°C. Both the LCST and Tg of (pNIPAAm) are readily tunable by changing its composition or its particle geometry. As such controlling each of these aspects independently is critical to optimizing the characteristics of the microgel.
 +
 +
One way to achieve independent optimization is by using microfluidic techniques to template pre-fabricated precursor polymers. In this way simultaneous solidifcation and polymerization are avoided because gelation occurs via a polymeric analogous route instead of by monomeric chain growth. Using prefabricated precursor polymers, allows the molecular structure to be tuned through polymer synthesis, while microfluidics allows the shape to be accurately and precisely controlled. In this work, the author explores various ways to exploit this smart microgel fabrication technique.

Revision as of 12:46, 27 November 2012

Page Currently Being Edited by Joseph Muth

Overview

Stimuli-responsive (smart) microgels are micron sized polymer particles that change shape in response to enviornmental stimuli. This responsiveness makes them useful in the fields of drug delivery, catalysis, sensing, and photonics. The most commonly used smart microgel material is poly(N-isopropylacrylamide) (pNIPAAm) because it has a lower critical solution temperature (LCST) around 32°C. Both the LCST and Tg of (pNIPAAm) are readily tunable by changing its composition or its particle geometry. As such controlling each of these aspects independently is critical to optimizing the characteristics of the microgel.

One way to achieve independent optimization is by using microfluidic techniques to template pre-fabricated precursor polymers. In this way simultaneous solidifcation and polymerization are avoided because gelation occurs via a polymeric analogous route instead of by monomeric chain growth. Using prefabricated precursor polymers, allows the molecular structure to be tuned through polymer synthesis, while microfluidics allows the shape to be accurately and precisely controlled. In this work, the author explores various ways to exploit this smart microgel fabrication technique.