Low-temperature synthesis of nanoscale silica multilayers – atomic layer deposition in a test tube
Birgit Hausmann
Reference
Keywords
Atomic layer deposition, silica multilayer
Overview
Tetramethoxysilane vapor is used alternately with ammonia vapor as a catalyst to grow uniform silica multilayers onto hydrophilic surfaces at ambient conditions.
Results and Discussion
Alkoxysilane vapor (tetramethoxysilane, TMOS) has been used for the low temperature growth of silica multilayers, which can be useful when organic materials are to be coated which can't resist high temperature conventional ALD. Here, silica multilayers were deposited isotropically on polymer colloidal spheres and within a colloidal crystal (opal) structure (setup shown in Fig. 1), by alternating the exposure of the substrate samples to TMOS and <math> \mathrm{NH_3/H_2O}</math> vapors. The <math> \mathrm{NH_3}</math> vapor is used to catalyze the hydrolysis of remaining methoxy groups and aids the condensation polymerization of surface silanol groups. Fig. 2 shows TMOS-based <math> \mathrm{SiO_2}</math> growth at 80 C on <math> \mathrm{SiO_2}</math> colloidal crystal films for different TMOS exposure cycles from 0 to 100. The interstitial space got increasingly covered by multilayers.