Long-distance propagation of forces in a cell

From Soft-Matter
Revision as of 22:56, 13 September 2010 by Amao (Talk | contribs)

Jump to: navigation, search

Entry by Angelo Mao, AP 225, Fall 2010

Title: Long-distance propagation of forces in a cell

Authors: Ning Wang, Zhigang Suo

Journal: Biochemical and Biophysical Research Communications

Volume: 328 (2005)

Pages: 1133–1138

Summary

The researchers propose two theoretical models for the propagation of "locally applied forces" throughout the body of a cell. Contrary to preexisting models, these models balance the effects of the actin bundles running throughout the inside of the cells against the cytoskeleton network. These models predict that the effects of force propagation via stiff actin bundles would far supersede the effects of force dampening via the cell's cytoskeleton. The results of theory are confirmed by experimentally applying a "local" force on the cell surface and observing where force deformations occur. Both theoretical and experimental results contribute insight to force propagation in the cell, which, in turn, has implications for cell signaling, behavior, and integrity.

Soft Matter Keywords: cell, in vitro, actin, force, modulus

Theoretical Summary

Background
AM-1-1 model.png
The researchers modeled the cell's interior as being governed by primarily two forces: actin fibers that could act as "force guides" and transmit force from the surface, where it occurred, to distances as far away as the cell diameter; and the internal cytoskeleton (CSK) network, which worked to homogenize the cell. If the force of the CSK network predominated, then the cell should act homogeneously, and the force should dissipate over a distance on the order of the size of the local application.

Theoretical models
The researchers proposed two theoretical models: one for longitudinal stresses, called the stiff fiber model, and one for transverse forces, called the prestressed string model, as applied to the actin bundle.

In the prestressed string model, the prestress keeping the actin bundles taut exerts a force of <math> h_{b}^{2} \sigma_{b} \partial^{2} v/ \partial x^{2} dx</math> and is countered by the restoring force of the CSK, which is <math> (G_{m}v/h_{m})h_{b}dx </math>. Equating the two yields a characteristic length <math>L_{1} = \sqrt{ \alpha_{b} h_{b} h_{m}/G_{m}}</math>.

The stiff fiber model treats an actin bundle as a spring following Hooke's law, with tensile stress <math> \alpha = E_{b} \partial u/\partial x</math>. A spring-like motion by the actin bundle is countered by the CSK shear stress of <math>\tau = G_{m} u/h_{m}</math>. Equating the two yields the characteristic length <math>L_{2} = \sqrt{ E_{b} h_{b} h_{m} /G_{m}}</math>.

Theoretical results
The researchers found equations for displacement of both transverse and longitudinal disturbances, and determined that the CSK has little effect on force and displacement in actin bundles. The characteristic lengths are suggestive of this result, because the moduli of the actin bundles (<math>\alpha_{b}</math> and <math>E_{b}</math>) are <math>10^{3} - 10^{5}</math> greater than the modulus for the CSK, <math>G_{m}</math>. Thus, the length scale for displacement is on the order of the size of the cell and indicates that the force does not dissipate over a small distance.


Experimental Summary