Jamming phase diagram for attractive particles

From Soft-Matter
Revision as of 08:46, 11 November 2009 by Chisholm (Talk | contribs) (Summary)

Jump to: navigation, search

Original Entry: Nick Chisholm, AP 225, Fall 2009

General Information

Authors: V. Trappe, V. Prasad, Luca Cipelletti, P.N. Segre, and D. A. Weitz

Publication: Nature 411 772-775 (2001)

Soft Matter Keywords

Colloid, Elastic Modulus, Jamming Transition, Stress, Viscosity


In this article, the authors present experimental evidence supporting theoretical proposals suggesting that a jamming phase diagram could be used in order to describe attractive particle systems, where the attractive interactions play a role similar to that of confining pressure. The fluid-to-solid transition of weakly attractive colloid particles is studied in detail, and the results conclude that they undergo a similar gelation behavior with increasing concentration and decreasing thermalization or stress. The authors thus claim that their results support the idea of a jamming phase diagram for attractive colloid particles, providing a unifying link between the glass transition, gelation, and aggregation.

Soft Matter Discussion

Figure 1, taken from [1].


[1] V. Trappe, V. Prasad, Luca Cipelletti, P.N. Segre, and D. A. Weitz, "Jamming phase diagram for attractive particles," Nature 411 772-775 (2001).