How non-iridescent colors are generated by quasi-ordered structures of bird feathers

From Soft-Matter
Revision as of 02:04, 12 November 2011 by Daniel (Talk | contribs)

Jump to: navigation, search


Most colours in nature are inherent due to the chemical nature of the material - chlorophyll gives the green colour in leaves, anthocyanin the colour red in petals and carotenoids renders the rosy pink colour of flamingo's plumage. But it has been known for a long time that there are many colouring that has a more physical origin, such as diffraction and intereference of light. Newton explained the colour of the peacock feather in terms of thin-film intereference, and the colours of the butterfly wing can be understood due to intereference between lamellar layers, just as intereference between periodic groovings on a disc can give rise to colors.

Colour1.png Colour2.png

Left: TEM of butterfly wing, right: schematic of how structural colour arises due to interference between the arrays of structures evenly spaced out.

But it is often thought that such structural colours are synonym with iridescence* - the phenomenon where the colour changes with viewing angle. This is because structural colours often arises due to highly-ordered, periodic structures which breaks the isotropy of space. The authors here demonstrates how conventional wisdom is not always true and how quasi-ordered structures in bird feathers can result in non-iridescent colours.

 * Strictly speaking, it has been known that there are many scattering phenomenon that are non-iridescent, such as the scattering light of fat emulsions in milk, but this involves scattering of the 
 whole spectrum of visible light giving the white colour in milk, whereas in peacock feather and butterfly wing, only light with a particular wavelengths are reflected.


It was found that the structural colour in bird feathers (C. continga, I. Puella) are due to quasi-ordered structures of nano-sized air pockets trapped in a mesh of keratin. There is some short ordered correlation between the positions of the air pocket in the scale of the wavelength of light, but they are isotropic at longer order. The air pockets are shown in the figure below.


Personal Thoughts


1. "How non-iridescent colors are generated by quasi-ordered structures of bird feathers", Noh et al, Advanced Materials, 2010

2. "Encoding Complex Wettability Patterns in Chemically Functionalized 3D Photonic Crystals", Burgess et al, JACS, 2011

3. "Photophysics of Structural Color in the Morpho Butterflies", Kinoshita et al, Forma, 2002

4. "How cephalopods change color", Wood and Jackson