# Difference between revisions of "Experimental observation of the crystallization of hard sphere colloidal particles by sedimentation onto flat patterned surfaces"

Tkodger226 (Talk | contribs) |
Tkodger226 (Talk | contribs) |
||

Line 33: | Line 33: | ||

The authors define a 6th-order bond parameter to define crystalline particles as such, | The authors define a 6th-order bond parameter to define crystalline particles as such, | ||

− | <math>\psi_j^{(6)}=\frac{1}{N}\sum_{k=1}^\ | + | <math>\psi_j^{(6)}=\frac{1}{N}\sum_{k=1}^\N_je^{i6\theta_{jk}}</math> |

## Revision as of 04:00, 20 April 2009

by Tom Kodger

## Reference

I.B. Ramsteiner, K.E. Jensen, D.A. Weitz, F. Spaepen. *PRE* **79**, 011403 (2009);

## Keywords

Colloidal crystal, patterned substrate, bond order parameter, template

## Abstract

We present a confocal microscopy study of 1.55 μm monodisperse silica hard spheres as they sediment and crystallize at the bottom wall of a container. If the particles sediment onto a feature less flat wall, the two bottom layers crystallize simultaneously and layerwise growth follows. If the wall is replaced by a hexagonal template, only layerwise growth occurs. Our results complement earlier numerical simulations and experiments on other colloidal systems.

## Capillarity In Action

While this paper contains very little capillarity, except for basic sedimentation concepts, the paper contains several useful experimental approaches, such as a bond order parameter, that could be used in other capillarity analyses. On a technical basis, the crystallization kinetics of sedimenting and templated colloidal sized particles is critical toward inexpensive photonic crystals.

Briefly, the experiment system contains monodispersed silica spheres (1.55μm) at low volume fraction in a fluorescent DMSO/water solution. Due to a density difference between the 2 components, these spheres slowly sediment according to,

<math>u_0=\frac{1}{18}\sigma^2\Delta\rho g/\eta \approx 4.7mm/h</math>

The authors index match using DMSO, to minimize van der Waals. As a result the inverse gravitational length, <math>g^*=m^*g\sigma/k_B T \approx 7</math> where <math>m^*=(\frac{1}{3}\pi\sigma^2)\Delta\rho</math> is the relative particle mass.

The particles are sedimented at the slow rate described above onto either a flat or templated substrate. The substrate is templated with a [111] oriented single crystal, made with reactive ion etching. A Leica SP5 confocal is used to observe the particles while they sediment slowly approximately every ~15sec per z-stack. The 3D dimensions are 93 X 93 X 16μm. Density profiles and bond order parameters are measured with time.

The authors define a 6th-order bond parameter to define crystalline particles as such,

<math>\psi_j^{(6)}=\frac{1}{N}\sum_{k=1}^\N_je^{i6\theta_{jk}}</math>