Difference between revisions of "Electrohydrodynamic size stratification and flow separation of giant vesicles"
m |
|||
Line 12: | Line 12: | ||
[[Image:Lecuyer-etal-figure1.jpg|500px|thumb|right|alt=Schematic of the experiment.|]] | [[Image:Lecuyer-etal-figure1.jpg|500px|thumb|right|alt=Schematic of the experiment.|]] | ||
− | An electrohydrodynamic method for separating small from giant unilamellar vesicles (GUVs) is presented in this paper. GUVs are fragile and common suspension separation techniques (e.g. centrifugation) are ineffective. Thus having an effective way to separate them is desirable. GUVs are of particular interest due to their ability to model biophysical systems since GUVs have similar sizes and structures (e.g. lipid bilayers, membranes) as living cells. There is also interest in using GUVs for new technology including nanoreactors and designable drug carriers. | + | An electrohydrodynamic (EHD) method for separating small from giant unilamellar vesicles (GUVs) is presented in this paper. GUVs are fragile and common suspension separation techniques (e.g. centrifugation) are ineffective. Thus having an effective way to separate them is desirable. GUVs are of particular interest due to their ability to model biophysical systems since GUVs have similar sizes and structures (e.g. lipid bilayers, membranes) as living cells. There is also interest in using GUVs for new technology including nanoreactors and designable drug carriers. In summary, the process for separating the vesicles involves applying an oscillatory electric field which generates an EHD flow around each vesicle close to an electrode. |
== Soft Matter == | == Soft Matter == |
Revision as of 20:23, 8 November 2009
Original Entry by Michelle Borkin, AP225 Fall 2009
Contents
Overview
Electrohydrodynamic size stratification and flow separation of giant vesicles.
S. Lecuyer, W. D. Ristenpart, O. Vincent, and H. A. Stone, Appl. Phys. Lett., 92, 104105, 2008
Keywords
electrohydrodynamics, Vesicle, suspensions
Summary
An electrohydrodynamic (EHD) method for separating small from giant unilamellar vesicles (GUVs) is presented in this paper. GUVs are fragile and common suspension separation techniques (e.g. centrifugation) are ineffective. Thus having an effective way to separate them is desirable. GUVs are of particular interest due to their ability to model biophysical systems since GUVs have similar sizes and structures (e.g. lipid bilayers, membranes) as living cells. There is also interest in using GUVs for new technology including nanoreactors and designable drug carriers. In summary, the process for separating the vesicles involves applying an oscillatory electric field which generates an EHD flow around each vesicle close to an electrode.
Soft Matter
(explain unilamellar vesicles)
Currently writing...