Difference between revisions of "Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics"

From Soft-Matter
Jump to: navigation, search
(Soft matter discussion)
Line 19: Line 19:
  
 
==Soft matter discussion==
 
==Soft matter discussion==
The notable soft matter physics discussion in the article occurs when the authors study the transition between the <i>dripping</i> of droplets from capillaries and fluid "jetting" out of the capillaries.
+
The notable soft matter physics discussion in the article occurs when the authors study the transition between the <i>dripping</i> of droplets from capillaries and fluid "jetting" out of the capillaries. This dripping-to-jetting transition depends on two physical constants: the <i>Weber number</i> and the <i>capillary number</i>, both of which can be thought of as dimensionless force ratios. The capillary number is the ratio of stress forces induced by the surrounding outer fluid (Figure 1) to the surface tension forces of the fluid interface. The Weber number is the ratio of inertial forces within the inner fluid to the surface tension forces.
 +
 
 +
When the Weber number is large (i.e., when We>>1)

Revision as of 04:51, 1 April 2009

Zach Wissner-Gross (March 30, 2009)

Information

Dripping, Jetting, Drops, and Wetting: The Magic of Microfluidics

A. S. Utada, L.-Y. Chu, A. Fernandez-Nieves, D. R. Link, C. Holtze, and D. A. Weitz

MRS Bulletin, 2007, 32, 702-708

Soft matter keywords

Surface tension, Rayleigh-Plateau instability, hydrodynamic focusing, emulsion, capillary number, Weber number

Summary

David Weitz and coworkers describe their work creating emulsions using concentric capillary tubes. They introduce two geometries for making these controlled emulsions: with coaxial flow, an outer fluid flow provides a shear force that pulls droplets out from an inner capillary (Figure 1), whereas with flow-focusing, the flow of the outer fluid (rather than the tube itself) focuses the inner fluid before shearing, producing noticeably smaller droplets (Figure 2).

The authors go on to realize that with coaxial flow, or co-flow as they call it for short, they can create cascading emulsion events with relative ease and control (Figure 3). Most impressive is the authors' "monodisperse triple emulsions," that make use of such recursion (Figure 4). By changing relative flow rates, they can alter the number of drops at each level in the hierarchy.

Finally, the authors run through an impressive list of applications for their technology. Using diblock copolymers as a surfactant and by evaporating intermediate droplets among a series of concentric droplets, they can create "polymerosome structures," such as lipid bilayers, or even bilayers with different polymers inside and outside (so-called "asymmetric polymerosomes"), which resemble the intra- and extracellular surfaces of cell membranes. Weitz and coworkers have created shells of liquid crystals and polymerizable hydrogels, and have even seeded triple emulsion droplets in thermosensitive gels, which shrink at higher temperatures, thereby tearing intermediate layers of the droplets for controlled release of the inner layers (think drug delivery!).

Soft matter discussion

The notable soft matter physics discussion in the article occurs when the authors study the transition between the dripping of droplets from capillaries and fluid "jetting" out of the capillaries. This dripping-to-jetting transition depends on two physical constants: the Weber number and the capillary number, both of which can be thought of as dimensionless force ratios. The capillary number is the ratio of stress forces induced by the surrounding outer fluid (Figure 1) to the surface tension forces of the fluid interface. The Weber number is the ratio of inertial forces within the inner fluid to the surface tension forces.

When the Weber number is large (i.e., when We>>1)