Difference between revisions of "Design principles for self assembly with short ranged interactions"

From Soft-Matter
Jump to: navigation, search
Line 13: Line 13:
 
As an example of a desired structure, the authors have chosen the cluster of eight colloidal spheres shown below. If all the spheres are identical, the yield of each cluster formation is prescribed by entropy. However, if different types of spheres are used, the fractional yield of each eight-sphere cluster can be altered; the question the authors aim to answer is how many types of spheres (i.e. geometrical labels) and with what interaction strengths (i.e. energetic labels) are necessary in order to enhance the yield of the highlighted cluster above all others.  
 
As an example of a desired structure, the authors have chosen the cluster of eight colloidal spheres shown below. If all the spheres are identical, the yield of each cluster formation is prescribed by entropy. However, if different types of spheres are used, the fractional yield of each eight-sphere cluster can be altered; the question the authors aim to answer is how many types of spheres (i.e. geometrical labels) and with what interaction strengths (i.e. energetic labels) are necessary in order to enhance the yield of the highlighted cluster above all others.  
  
 +
[[Image:eight-sphere_clusters.png]]
  
 
+
In more strictly mathematical terms, this problem amounts to finding the optimal interaction matrix. According to the authors, three parameters need be specified for this problem to be solved: the number of energetic labels (which specifies the matrix dimensions), the number of desired interactions (i.e. how many pairs of sphere types should be encouraged to connect), and the standard deviation of the interaction energies between all pairs of sphere types (i.e. the width of the spectrum of all available interaction energies).
 
+
  
 
'''Comments'''
 
'''Comments'''

Revision as of 14:26, 19 September 2011

Keywords

directed self-assembly, functionalised particles, colloidal clusters, random energy model

Summary

Self-assembly is an attractive method for fabricating micro-structures. It is free of the complexity and cost of traditional top-down approaches such as microfabrication; however, at its current stage of development, it suffers from low yield. In order to direct the formation of pre-designed structures with self-assembly, the constituent particles are frequently functionalised (by means of DNA coating, for example), so that their interactions can be controlled. Previous work on the design criteria for these interactions was based on local particle properties, such as the short-range interaction strength. While these criteria are important, the authors claim that global thermodynamic quantities need also be considered in order to design systems with high yield.

The authors describe their model in terms of a system with constituent particles labeled with two types of labels: geometric labels, which denote the resulting pattern, and energetic labels, which denote the interaction energy between a particle and its neighbors. These concepts are illustrated schematically in figure 1, where the numbers denote the geometrical label and the colors denote the energetic label. Note that in both cases a checkerboard pattern is created, however the energy landscape across the two patterns is different.

Checkers.png

As an example of a desired structure, the authors have chosen the cluster of eight colloidal spheres shown below. If all the spheres are identical, the yield of each cluster formation is prescribed by entropy. However, if different types of spheres are used, the fractional yield of each eight-sphere cluster can be altered; the question the authors aim to answer is how many types of spheres (i.e. geometrical labels) and with what interaction strengths (i.e. energetic labels) are necessary in order to enhance the yield of the highlighted cluster above all others.

Eight-sphere clusters.png

In more strictly mathematical terms, this problem amounts to finding the optimal interaction matrix. According to the authors, three parameters need be specified for this problem to be solved: the number of energetic labels (which specifies the matrix dimensions), the number of desired interactions (i.e. how many pairs of sphere types should be encouraged to connect), and the standard deviation of the interaction energies between all pairs of sphere types (i.e. the width of the spectrum of all available interaction energies).

Comments