# Difference between revisions of "Critical Casimir effect in three-dimensional Ising systems: Measurements on binary wetting films"

(→Abstract) |
(→Abstract) |
||

Line 8: | Line 8: | ||

==Abstract== | ==Abstract== | ||

− | I analogy to the quantum electrodynamics casimir force, arising between conducting plates due to confinement of zero-point fluctuations of vacuum fields, a thermodynamics Casimir force has been introduced. The latter arises by confining a fluid with diverging bulk correlation lenght <math>\ | + | I analogy to the quantum electrodynamics casimir force, arising between conducting plates due to confinement of zero-point fluctuations of vacuum fields, a thermodynamics Casimir force has been introduced. The latter arises by confining a fluid with diverging bulk correlation lenght <math>\xi</math> to a finite dimension L. Authors of this paper set out to experimentally confirm theoretical predictions for this force, in binary thin wetting films close to liquid/vapor coexistence. They extract a Casimir amplitude <math>\Delta_{+-}</math> as well as a Casimir scaling function <math>\theta_{+-}</math> which, they find, depends monotonically on dimensionality. |

==Soft Matter Snippet== | ==Soft Matter Snippet== |

## Revision as of 13:21, 18 May 2009

## Overview

**Authors:** Masafumi Fukuto, Yohko F. Yano & Peter S. Pershan

**Source:** Physical Review Letters, Vol.94, 135702, (2005)

**Soft Matter key words:** thermodynamic Casimir force, correlation length, thin films, wetting

## Abstract

I analogy to the quantum electrodynamics casimir force, arising between conducting plates due to confinement of zero-point fluctuations of vacuum fields, a thermodynamics Casimir force has been introduced. The latter arises by confining a fluid with diverging bulk correlation lenght <math>\xi</math> to a finite dimension L. Authors of this paper set out to experimentally confirm theoretical predictions for this force, in binary thin wetting films close to liquid/vapor coexistence. They extract a Casimir amplitude <math>\Delta_{+-}</math> as well as a Casimir scaling function <math>\theta_{+-}</math> which, they find, depends monotonically on dimensionality.