Controlling the Fiber Diameter during electrospinning

From Soft-Matter
Revision as of 22:04, 21 April 2009 by Zachwg (Talk | contribs) (Soft matter discussion)

Jump to: navigation, search

Zach Wissner-Gross (April 21, 2009)


Controlling the fiber diameter during electrospinning

Sergey V. Fridrikh, Jian H. Yu, Michael P. Brenner, and Gregory C. Rutledge

Physical Review Letters, 2003, 90, 144502

Soft matter keywords

Electrospinning, surface tension, scaling


Figure 1: Log-log plot of <math>Q/I</math> vs. <math>d_t</math>, the minimum fiber radius. The inset figure renormalizes the data based on polymer concentration and compares this to their theoretical prediction, which nicely falls below the experimental data and has a similar slope.

Fridrikh et al. derive an analytical model of the forces involved in electrospinning [1]. In the process of electrospinning, a polymer fiber is created by ejecting the polymer in a solvent between two plates of opposite electric charge. When the plate voltages are high enough, electrostatic forces dominate forces due to surface tension, so that the polymer develops a very high aspect ratio (i.e., becoming a thin fiber) as it streams toward the opposing plate.

Electrospinning is further complicated by the "whipping instability," in which the electrospun fiber coils around itself. In their model, the authors are able to calculate the minimum possible fiber radius (for a thin viscous jet) before the whipping instability breaks the jet up into droplets (as in electrospraying [2]).

Their main result is that this terminal radius <math>h_t</math> scales as:


where <math>Q</math> is the flow rate of the polymer solution and <math>I</math> is current (due to the net downward motion of the fiber, which is simultaneously whipping around in circles). Figure 1 shows a log-log plot of <math>Q/I</math> vs. <math>h_t</math>, which we would expect to have a slope of 2/3. The fitted line, with a slope of 0.639, corresponds well with their theory, and the offset in the log-log plot suggests that the authors' electrospun fibers could be reduced in size by a factor of two but no more.

Soft matter discussion

Figure 2: Equation 1 from the article, representing the equation of motion of an electrospun fiber.

The physics in this article is all derived from the authors' Equation 1 (the equation of motion for an electrospun fiber), which I reproduce here in Figure 2. The lone term on the left side of the equation is simply the force per unit length (one can simply guess what each of the variables represents).

The first term on the right side is the force from the electric field acting on the surface charge of the fiber (<math>\sigma_0</math>), whereas everything inside the parentheses on the right side represents bending stress, to which the authors attribute the whipping instability. If this whole term (i.e., inside the parentheses) is negative, then the fiber can reduce its total energy with increased bending, and so the fiber is deemed unstable.

Inside the parentheses, we first see a surface tension term (which is positive and counteracts bending, since bending increases the surface area of the fiber), and then a Hookean normal stress term associated with stretching that occurs when the fiber is bent. The authors point on that this force is similarly stabilizing.

So then what is this third term, which, as the only term left, must be responsible for inducing any instabilities? According to the authors, "The third term is due to surface charge repulsion and is destabilizing."