Difference between revisions of "Controlled Assembly of Jammed Colloidal Shells on Fluid Droplets"

From Soft-Matter
Jump to: navigation, search
(Summary)
(Summary)
Line 13: Line 13:
 
==Summary==
 
==Summary==
  
Stone and coworkers use hydrodynamic focusing in PDMS microchannels to form what they call "colloidal armor" around a gas or liquid bubble. They accomplish this by flowing two colloid suspensions from either side into the path of a central channel (Figure 1) containing the liquid/gas that will ultimately become the core of the colloid shell. Fluorescent polystyrene beads were chosen here as the colloid.
+
Stone and coworkers use hydrodynamic focusing in PDMS microchannels to form what they call "colloidal armor" around a gas or liquid bubble. They accomplish this by flowing two colloid suspensions from either side into the path of a central channel containing the liquid/gas that will ultimately become the core of the colloid shell (Figure 1). Fluorescent polystyrene beads were chosen here as the colloid.
  
 
The authors also noted several very interesting properties of the assembly. First was that the colloidal shells were "jammed," as stated in the paper's title, meaning that the colloidal particles did not diffuse around the surface, instead exhibiting solid or crystalline behavior with a few predictable point defects. This allowed them to record a rather fascinating image in which they created a bubble whose armor consists of two hemispheres of different colors (Figure 2). Also notable was the fact that only certain particles were able to become a part of the colloidal armor. This is discussed in greater detail below.
 
The authors also noted several very interesting properties of the assembly. First was that the colloidal shells were "jammed," as stated in the paper's title, meaning that the colloidal particles did not diffuse around the surface, instead exhibiting solid or crystalline behavior with a few predictable point defects. This allowed them to record a rather fascinating image in which they created a bubble whose armor consists of two hemispheres of different colors (Figure 2). Also notable was the fact that only certain particles were able to become a part of the colloidal armor. This is discussed in greater detail below.

Revision as of 17:59, 9 March 2009

Zach Wissner-Gross (March 9, 2009)

Information

Controlled assembly of jammed colloidal shells on fluid droplets

Anand Bala Subramaniam, Manouk Abkarian, and Howard Stone

Nature Materials, 2005, 4, 553-556

Soft matter keywords

Adsorption, self-assembly, surface tension

Summary

Stone and coworkers use hydrodynamic focusing in PDMS microchannels to form what they call "colloidal armor" around a gas or liquid bubble. They accomplish this by flowing two colloid suspensions from either side into the path of a central channel containing the liquid/gas that will ultimately become the core of the colloid shell (Figure 1). Fluorescent polystyrene beads were chosen here as the colloid.

The authors also noted several very interesting properties of the assembly. First was that the colloidal shells were "jammed," as stated in the paper's title, meaning that the colloidal particles did not diffuse around the surface, instead exhibiting solid or crystalline behavior with a few predictable point defects. This allowed them to record a rather fascinating image in which they created a bubble whose armor consists of two hemispheres of different colors (Figure 2). Also notable was the fact that only certain particles were able to become a part of the colloidal armor. This is discussed in greater detail below.

What was novel about this shell synthesis method was, as the authors say, that it "allows an unprecedented degree of control over armour composition, size and stability." I find multicomponent shell synthesis (Figure 2) to be particularly exciting, as it can lead to the creation of microparticles expressing antigens in well-defined and locked positions for drug delivery and other applications.