Difference between revisions of "A Biodegradable and Biocompatible Gecko-Inspired Tissue Adhesive"

From Soft-Matter
Jump to: navigation, search
(Keywords)
(Summary)
Line 9: Line 9:
 
==Summary==
 
==Summary==
  
 +
In this paper, the authors describe a biodegradable and biocompatible gecko-inspired tissue adhesive that they have created using nano-patterned polymers.  The feet of geckos have been of great interest to scientists exploring interface forces.  The feet of geckos are covered in a dense fibrillar array which exploits a combination of van der Waals and capillary forces to adhere to surfaces.  Several groups have done work to develop gecko-inspired tapes for various applications. The authors of this paper look specifically at the advantages these kinds of tapes can offer in a medical setting.  Gecko-inspired tapes could be a useful [[surgical suture]].  In traditional sutures such as stapling or stitching, the tissue must be punctured to put in the suture.  With a tape, very little if deformation to the underlying tissue would be required.  Additionally, such an adhesive could have applications as waterproof sealants for hollow organ anatomoses, mesh grafts to treat hernias, ulcers and burns, and hemostatic wound dressing. 
  
 +
In addition to the creation of adhesion forces, this tape has the requirement to be both biocompatible and biodegradable.  If the tape is to be used '''in vivo''' it obviously needs to be bio-compatible.  If the tape is to be used to be used to help suture cuts after surgery, it should be biodegradable so that after the wound is healed, the suture degrades and is passed out of the body. 
 +
 +
To create such a material, the authors turn to polymers and nano-patterning.  The elastic properties of polymers offer an additional advantage since they will then be more biocompatible with naturally elastic soft materials of the body.  Specifically, the authors use poly(glycerol sebacate acrylate) (PGSA). First, they lay down a flat surface of the polymer and then they pattern nano-pillars on top of the surface. The pillars were conical in nature and the adhesion was measured as a function of the ratio of the tip diameter and the base diameter. The authors then measured adhesion of these surfaces and found that the nano-patterned surfaces led to a two-fold increase in adhesion over a flat surface of the polymer.  To optimize for tissue interfacing, the authors then coated the nano-patterned surface with a thin layer of oxidized dextran (DXT) which has functionalized aldehydes (DXT aldehyde is DXTA).  The DXTA reacts with proteins to form an imine (type of double bond). Different compositions of PGSA were tested, including some with a mixture of polyethylene glycol diacrylate (PEGDA). From what I understand, the PEGDA and DXTA create cross-links with the tissue and hence allow the adhesion to form in an aqueous environment, a requirement that is crucial for the wet environment of a body. 
 +
 +
The authors go on to characterize the material and demonstrate that it is successful as an adhesive in both '''in vitro''' and '''in vivo''' settings.  In conclusion, they have created a polymer based, nano-patterned material that is adhesive while meeting the requirements of biocompatibility and biodegradibility.
  
 
==Soft Matter Connection==
 
==Soft Matter Connection==

Revision as of 11:18, 21 October 2009

Original entry by A.J. Kumar, APPHY 225 Fall 2009

Reference

Alborz Mahdavi, Lino Ferreira, Cathryn Sundback, Jason W. Nichol, Edwin P. Chan, David J. D. Carter, Chris J. Bettinger, Siamrut Patanavanich, Loice Chignozha, Eli Ben-Joseph, Alex Galakatos, Howard Pryor, Irina Pomerantseva, Peter T. Masiakos, William Faquin, Andreas Zumbuehl, Seungpyo Hong, Jeffrey Borenstein, Joseph Vacanti, Robert Langer, and Jeffrey M. Karp. PNAS 2008 105 (7), 2307-2312.

Keywords

Chemical Cross-Link, Medical Adhesive, Nanotopography, Surgical Suture, Polymers, Adhesion

Summary

In this paper, the authors describe a biodegradable and biocompatible gecko-inspired tissue adhesive that they have created using nano-patterned polymers. The feet of geckos have been of great interest to scientists exploring interface forces. The feet of geckos are covered in a dense fibrillar array which exploits a combination of van der Waals and capillary forces to adhere to surfaces. Several groups have done work to develop gecko-inspired tapes for various applications. The authors of this paper look specifically at the advantages these kinds of tapes can offer in a medical setting. Gecko-inspired tapes could be a useful surgical suture. In traditional sutures such as stapling or stitching, the tissue must be punctured to put in the suture. With a tape, very little if deformation to the underlying tissue would be required. Additionally, such an adhesive could have applications as waterproof sealants for hollow organ anatomoses, mesh grafts to treat hernias, ulcers and burns, and hemostatic wound dressing.

In addition to the creation of adhesion forces, this tape has the requirement to be both biocompatible and biodegradable. If the tape is to be used in vivo it obviously needs to be bio-compatible. If the tape is to be used to be used to help suture cuts after surgery, it should be biodegradable so that after the wound is healed, the suture degrades and is passed out of the body.

To create such a material, the authors turn to polymers and nano-patterning. The elastic properties of polymers offer an additional advantage since they will then be more biocompatible with naturally elastic soft materials of the body. Specifically, the authors use poly(glycerol sebacate acrylate) (PGSA). First, they lay down a flat surface of the polymer and then they pattern nano-pillars on top of the surface. The pillars were conical in nature and the adhesion was measured as a function of the ratio of the tip diameter and the base diameter. The authors then measured adhesion of these surfaces and found that the nano-patterned surfaces led to a two-fold increase in adhesion over a flat surface of the polymer. To optimize for tissue interfacing, the authors then coated the nano-patterned surface with a thin layer of oxidized dextran (DXT) which has functionalized aldehydes (DXT aldehyde is DXTA). The DXTA reacts with proteins to form an imine (type of double bond). Different compositions of PGSA were tested, including some with a mixture of polyethylene glycol diacrylate (PEGDA). From what I understand, the PEGDA and DXTA create cross-links with the tissue and hence allow the adhesion to form in an aqueous environment, a requirement that is crucial for the wet environment of a body.

The authors go on to characterize the material and demonstrate that it is successful as an adhesive in both in vitro and in vivo settings. In conclusion, they have created a polymer based, nano-patterned material that is adhesive while meeting the requirements of biocompatibility and biodegradibility.

Soft Matter Connection

Additional References