Nanofluid spreading on solids

From Soft-Matter
Jump to: navigation, search

Coming soon to a browser near you...


Entry by Richie Tay for AP 225 Fall 2012

General

Authors: Darsh Wasan, Alex Nikolov

Publication: Wasan, D et al. Spreading of nanofluids on solids. Nature, 423, 156-159 (8 May 2003)

Keywords: Disjoining pressure, Thin film, Nanofluid

Introduction

Nanofluids are dilute suspensions of nanoparticulates (e.g. micelles, globular proteins, metal particles). They are widely investigated for their enhanced thermophysical properties [1], but their unique spreading behavior also makes them potentially useful for soil remediation, lubrication, and oil recovery, among other applications [2]. Unlike simple liquids, whose spreading velocity scales inversely with viscosity, nanofluids show enhanced spreading as nanoparticle concentration (and hence liquid viscosity) is increased [3]. Theoretical calculations suggest that this phenomenon could arise from organization of the nanoparticles in confined spaces; in this paper, the authors sought experimental evidence of this ordering using video microscopy.

Results and Discussion

Figure 1. (a) Experimental setup for looking at particle ordering in the wedge region. (b) Particle structuring in a wedge film. Latex particles had diameter 1μm, charge 0.8μC/cm2, and occupied 7 vol.%. Figure from Ref. [2]
Figure 2. (Left) In-layer particle structure inside the wedge film. (Middle) Theoretical disjoining pressure profile on the wedge walls as a function of film thickness r scaled by particle diameter d (= 8nm). (Right) Calculated spreading coefficient arising owing to particle disjoining pressure. Figures from Ref. [2]
Figure 3. (a) Photomicrograph of the differential interference patterns formed at the three-phase (solid–liquid–air) contact region of an oil drop placed on a glass surface. (b–e) Photomicrographs taken at (b) 30s; (c) 2 min; (d) 4 min; and (e) 6 min after addition of an aqueous micellar solution of SDS. Figure from Ref. [2]

To examine particle structuring, the authors started with a nanofluid comprising 7 vol.% charged latex spheres in deionized water. They trapped a 200μm-diameter air bubble under a glass plate in the nanofluid, and looked at the wedge-like three-phase contact region using reflected-light digital video microscopy (Fig. 1a). They found that the particles formed a 2D colloidal crystal at a wedge-film thickness twice the particle diameter, but beyond three particle diameters, the particles became disordered. Figure 1b shows the ordering of the particles in the wedge region. The observed particle distribution pattern (Fig. 2, left) corresponded to calculations of the disjoining pressure <math>\Pi</math> (Fig. 2, middle), as well as to computer simulations. The oscillatory pattern arose from changes in particle-particle mean interaction potential as crystallization occurred in the wedge films. Also shown in Figure 2 (right) is the spreading coefficient S (estimated using Eq1.jpg and theoretical calculations for <math>\Pi</math>), which increased as film thickness decreased. The sharp change in the slope for S occured at the wedge thickness where there was particle ordering, thus proving that this structuring is what enhances the spreading of nanofluids on solids.

As a demonstration of the utility of this atypical spreading, the authors then simulated an oily soil removal process using an oil droplet immersed in an aqueous suspension of SDS (0.4 vol.%, 10x the critical micelle concentration). With the aid of differential and common three-phase contact angle interferometry, they showed the sequential penetration of the nanofluid between the oil and glass surface, leading to the formation of small aqueous lenses (white spots encircled by dark fringes) and the eventual separation of the oil drop from the glass by a thick aqueous film with a dimple (Fig. 3).

This article brings sheds light on the inadequacy of well-established concepts of spreading and adhesion in simple liquids. Whereas in simple fluids, the spreading coefficient would be independent of film thickness, in nanofluids, the spreading coefficient is highly dependent on the thickness of the film. This is due to the oscillatory disjoining pressure, which is caused by the particle structure in the wedge film.

References

[1] A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J Nanomaterials, Volume 2012 (2012), Article ID 435873

[2] Wasan, D et al. Spreading of nanofluids on solids. Nature, 423, 156-159 (8 May 2003)

[3] Sefiane, K et al. Contact line motion and dynamic wetting of nanofluid solutions. Adv Colloid Interfacial Sci, Vol 138, Issue 2 (19 May 2008), Pages 101–120